Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana.
نویسندگان
چکیده
We previously identified DS1 plants that showed resistance to compatible Ralstonia solanacearum with accelerated defense responses. Here, we describe activation mechanisms of defense responses in DS1 plants. After inoculation with incompatible R. solanacearum 8107, DS1 plants showed hyperinduction of hypersensitive response (HR) and reactive oxygen species (ROS) generation. Transient expression of PopP1 and AvrA induced hyperinduction of HR and ROS generation. Furthermore, Pseudomonas cichorii (Pc) and a type III secretion system (TTSS)-deficient mutant of P. cichorii showed accelerated induction of HR and ROS generation. Chitin and flg22 did not induce either HR or ROS hyperaccumulation; however, INF1 accelerated HR and ROS in DS1 plants. Activation of these defense responses was closely associated with increased phosphatidic acid (PA) content. Our results show that DS1 plants exhibit PA-mediated sensitization of plant defenses and that cell death-inducing stress is required to achieve full activation of defense responses.
منابع مشابه
Suppression of DS1 Phosphatidic Acid Phosphatase Confirms Resistance to Ralstonia solanacearum in Nicotiana benthamiana
Nicotianabenthamiana is susceptible to Ralstonia solanacearum. To analyze molecular mechanisms for disease susceptibility, we screened a gene-silenced plant showing resistance to R. solanacearum, designated as DS1 (Disease suppression 1). The deduced amino acid sequence of DS1 cDNA encoded a phosphatidic acid phosphatase (PAP) 2. DS1 expression was induced by infection with a virulent strain of...
متن کاملJasmonate ZIM-Domain (JAZ) Protein Regulates Host and Nonhost Pathogen-Induced Cell Death in Tomato and Nicotiana benthamiana
The nonhost-specific phytotoxin coronatine (COR) produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile) mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1) is the receptor for COR and JA-Ile....
متن کاملSEC14 Phospholipid Transfer Protein Is Involved in Lipid Signaling-Mediated Plant Immune Responses in Nicotiana benthamiana
We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14) in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense-related PR-4 and accumulation of jasmonic acid...
متن کاملPepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response.
The Xanthomonas campestris pv vesicatoria (Xcv) effector AvrBsT induces a hypersensitive cell death in pepper (Capsicum annuum). However, the molecular mechanisms underlying AvrBsT-triggered cell death are not fully understood. Here, we identified pepper arginine decarboxylase (CaADC1) as an AvrBsT-interacting protein, which is early and strongly induced in incompatible pepper-Xcv interactions....
متن کاملTemporal and Spatial Resolution of Activated Plant Defense Responses in Leaves of Nicotiana benthamiana Infected with Dickeya dadantii
The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of plant physiology
دوره 184 شماره
صفحات -
تاریخ انتشار 2015